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ABSTRACT
Modern commercial Field-Programmable Gate Array (FPGA) archi-
tectures support dual-output look-up tables (LUTs). If the number
of total inputs in two small LUTs do not exceed the constraint, e.g., 5
in Xilinx UltraScale+ series, we can pack them into one dual-output
LUT to reduce area, i.e., the number of LUTs. However, previous
works have not fully utilized this feature. They usually generate
single-output LUTs in the technology mapping phase and merge
LUTs in a later packing phase. In this situation, they cannot get LUT
merging information during technology mapping and will generate
some single-output LUTs that are not suitable for merging.

In this work, we directly generate dual-output LUTs in the tech-
nology mapping phase and propose a novel cut-based mapping flow.
The mapping flow consists of several mapping passes with different
cut selection metrics. In each pass, we first compute the priority
single-output cuts of each node. Then, we merge dual-output cuts
from the priority cuts to generate a mapped LUT netlist. Finally,
we do some local refinement to further improve the merging rate
and reduce area. Experimental evaluation shows that our mapping
flow can merge up to 14.89% more LUTs and save up to 13.98% area
on average, compared to the state-of-the-art technology mapping
tool ABC, without worsening the total delay.
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• Hardware→ Technology-mapping; Circuit optimization.
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1 INTRODUCTION
Technology mapping is an important phase in Field-Programmable
Gate Array (FPGA) design. It transforms a technology-independent
Boolean circuit into a functionally equivalent netlist of look-up
tables (LUTs). An FPGA comprises of a number of 𝐾-input LUTs
(also denoted as LUT-𝐾 ), each of which can implement an arbitrary
Boolean function of no more than 𝐾 inputs. 𝐾 is an architecture
parameter defined by the FPGA. We can implement any Boolean
function on an FPGA using limited 𝐾-input LUTs.

A mainstream approach of technology mapping is based on cut
enumeration [5, 21]. A cut of a node is a set of nodes in its transitive
fanins that can block all of the paths from the primary inputs to
it. A cut with 𝐾 nodes can be implemented by a 𝐾-input LUT. The
cut-based approach first selects a representative cut for each node
in the Boolean circuit. Then, it selects a subset of cuts to cover the
whole circuit. The corresponding LUTs of these cuts are used in
the final mapping.

Technology mapping usually targets delay (the depth of the LUT
netlist) and area (the number of LUTs) minimization. To achieve this
goal, previous works [22] have proposed several heuristic metrics
for cut selection, e.g., cut size, area flow (a global area estimation),
exact flow (a local area estimation). The mapping procedure ranks
cuts with different heuristic metrics in different mapping passes.

However, the cut-based approach and these heuristic metrics
are designed for conventional single-output LUT architectures. We
cannot apply them to dual-output LUT architectures directly. Sev-
eral modern FPGAs support dual-output LUTs. A LUT can be used
as a large single-output LUT or fractured into two small LUTs. Two
small LUTs can be merged if both their independent input size and
sharing input size do not exceed the constraint. For example, in
Xilinx UltraScale+ series [3], a 6-input LUT can be fractured into
two LUTs with up to 5 inputs. This feature can be utilized to fur-
ther improve the mapping quality, including delay, area, and even
robustness [14, 15].

To support this feature, existing tools separate single-output
LUT generation and dual-output LUT merging into two design
phases. The technology mapping phase remains unchanged, and a
later packing phase merges LUTs. Since minimizing the number of
single-output LUTs does not necessarily minimize the number of
dual-output LUTs, existing technology mapping approaches usually
cannot get the optimal result. Although previous works design some
heuristic metrics, e.g., edge recovery in WireMap [13], to improve
the LUT merging rate, the LUT merging rate remains low. Taking
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13 typical cases in the EPFL benchmark and UltraScale+ series (see
Section 6) as an example, only less than 10% LUTs can be merged
after ABC [25] technology mapping, while the LUT merging rate
is close to 20% in our work.

In this work, we address this problem by proposing a novel tech-
nology mapping flow. The mapping flow generates single-output
LUTs and merges dual-output LUTs simultaneously in the technol-
ogy mapping phase for the first time. The main contributions are
listed as follows:
• We propose a cut-based mapping flow with several mapping
passes. In each mapping pass, we perform global dual-output
cut merging from priority cuts and then do some local re-
finement for a higher merging rate.
• We extend the heuristic metrics for single-output cut se-
lection to support dual-output cut selection. The extended
heuristic metrics prefer dual-output cuts with more sharing
inputs.
• We experimentally evaluate our mapping flow using the
modern EPFL benchmark and show that our flow can merge
up to 14.89%more LUTs and save up to 13.98% area compared
to the state-of-the-art technology mapping tool.

2 PRELIMINARIES
2.1 Combinational Circuit
A combinational circuit can be represented by a directed acyclic
graph (DAG) where nodes correspond to logic gates and edges
correspond to wires connecting the gates. Each node in the graph
has zero or more fanins and fanouts. The primary inputs (PIs) are
nodes without fanins, while the primary outputs (POs) are nodes
without fanouts.

A fanin cone of a node is a subset of nodes in the graph that can
be reached from the given node through the transitive fanin edges.
A maximum fanout free cone (MFFC) of this node is a subset of its
fanin cone, such that every path from a node in the subset to the
POs passes through this node.

A graph is called a 𝐾-bounded subject graph if the number of
fanins of any node does not exceed 𝐾 . Any given network can be
decomposed to create a 𝐾-bounded graph suitable for technology
mapping. For example, we can use ABC to transform an arbitrary
graph to an AND-INV graph (AIG) that only contains two-input
AND gates and inverters.

2.2 Single-Output Cut
Given a single node as the root (𝑟𝑜𝑜𝑡 (𝑐)), a single-output cut 𝑐 [8] is
a set of nodes that satisfies every path from a PI to the root passes
through at least one node in the set. Nodes in this set are also called
leaves. A trivial cut only contains the root itself and does not cover
any nodes. A non-trivial cut covers the root and all of the nodes
on the path from the leaves to the root except the leaves. A cut is
𝐾-feasible if the number of leaves in it does not exceed 𝐾 . A cut is
dominated if another cut rooted at the same node also covers the
nodes it covers.

Let Φ(𝑛) denote the set of 𝐾-feasible cuts rooted at the node 𝑛,
we define the operation ⊗ as:

Φ(𝑛1) ⊗ Φ(𝑛2) = {𝑐1 ∪ 𝑐2 |𝑐1 ∈ Φ(𝑛1), 𝑐2 ∈ Φ(𝑛2), |𝑐1 ∪ 𝑐2 | ≤ 𝐾}.
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Figure 1: A cut enumeration example. We list all of the 3-
feasible single-output cuts next to each node.

We can compute Φ(𝑛) by combining the trivial cut and the cut set
of its fanins:

Φ(𝑛) =
{{{𝑛}} 𝑛 ∈ 𝑃𝐼,
{{𝑛}} ∪ (Φ(𝑛1) ⊗ Φ(𝑛2) ⊗ ...) fanin(𝑛) = {𝑛1, 𝑛2, ...}.

For a 𝐾-bounded subject graph, we can enumerate 𝐾-feasible
cuts of all nodes in a topological order, such that the fanin cuts are
available when computing the cut set of the root. Figure 1 gives
a cut enumeration example with 𝐾 = 3. Three PIs 𝑖1, 𝑖2, 𝑖3 only
have a trivial cut each. As the depth increases, the number of cuts
increases exponentially. Among the cuts rooted at 𝑜1, {𝑛1, 𝑖2, 𝑖3}
and {𝑛2, 𝑖1, 𝑖2} are dominated by {𝑖1, 𝑖2, 𝑖3}.

Cuts are widely used in technology mapping. Since a 𝐾-input
LUT can implement an arbitrary Boolean function, we can im-
plement a 𝐾-feasible cut with a 𝐾-input LUT. The conventional
cut-based technology mapping for 𝐾-input single-output LUTs is
applied to 𝐾-bounded subject graphs. Usually, a mapping proce-
dure first enumerates 𝐾-feasible cuts in the graph. Then, it selects
one cut as the representative cut for each node. Finally, it selects
a subset of nodes whose representative cuts can cover all non-PI
nodes. These nodes are used in this mapping.

2.3 Dual-Output LUT
In several modern FPGAs, a large LUT with 6 inputs or more can
be “fractured” into two small LUTs, which helps further improve
delay and area. When implementing a large circuit, we can map the
timing-critical part with single-output LUTs to reduce delay. We
can also map the non-timing-critical part with dual-output LUTs
to reduce area. Combining two small LUTs is called LUT merging.

Figure 2 shows twomodes of a LUT. This LUT has two usable pins
in this architecture. In the single-output mode, it can implement a
large LUT with no more than 𝐼single (= 𝐾single) inputs. In the dual-
output mode, it can implement two independent small LUTs that
meets three constraints:

• Two LUTs have no more than 𝐼dual independent inputs in
total, i.e., 𝐼unique,1 + 𝐼sharing + 𝐼unique,2 ≤ 𝐼dual .
• Each LUT has no more than 𝐾dual inputs, i.e., 𝐼unique,i +
𝐼sharing ≤ 𝐾dual (𝑖 = 1, 2).
• Two LUTs can have no more than 𝐼sharing sharing inputs.

Table 1 gives the parameters of three typical FPGA series that sup-
port dual-output LUTs. Intel ALM series has several configuration
parameters. Here lists a typical set of parameters. We can see that
𝐾dual is usually no more than 𝐾single .
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(b) The dual-output mode. The total input bit width is
𝐼unique,1 + 𝐼sharing + 𝐼unique,2 .

Figure 2: Two modes of a LUT. 𝐼𝑥 represents an input bit
width, and 𝐾𝑥 represents a LUT size.

Table 1: Parameters of three typical FPGA series.

FPGA UltraScale+ [3] Versal [11] Intel ALM [1, 6]
𝐼single (𝐾single) 6 6 8

𝐼dual 5 6 8
𝐼sharing 5 6 4
𝐾dual 5 6 6

3 CUT-BASED LUT MERGING PROBLEM
3.1 Dual-output Cut Extension
To state this problem, we first extend the cut definition to dual
outputs. For two single-output cuts 𝑐1 and 𝑐2 with different roots,
we define their dual-output cut 𝑐1 ∪ 𝑐2 as the union of them. The
roots of them 𝑟𝑜𝑜𝑡 (𝑐1) and 𝑟𝑜𝑜𝑡 (𝑐2) become the root of the dual-
output cut. 𝑐1 ∪𝑐2 covers the nodes covered by 𝑐1 and 𝑐2. Similar to
the single-output cut, the dual-output cut satisfies that every path
from a PI to either root passes through at least one node in the cut.

Let Φ(𝑛1, 𝑛2) denote the subset of dual-output cuts rooted at the
node 𝑛1 and 𝑛2 that satisfy the constraints in Section 2.3, we can
compute Φ(𝑛1, 𝑛2) after Φ(𝑛1) and Φ(𝑛2) are enumerated:

Φ(𝑛1, 𝑛2) = {𝑐1∪𝑐2 |𝑐1 ∈ Φ(𝑛1), 𝑐2 ∈ Φ(𝑛2), |𝑐1 ∪ 𝑐2 | ≤ 𝐼dual,
|𝑐1 | ≤ 𝐾dual, |𝑐2 | ≤ 𝐾dual, |𝑐1 ∩ 𝑐2 | ≤ 𝐼sharing}.

For example, in Figure 1, assuming that 𝐼dual = 3 and 𝐼sharing =

𝐾dual = 2, we can get Φ(𝑛1, 𝑛2) = {{𝑛1, 𝑛2}, {𝑛1, 𝑖2, 𝑖3}, {𝑛2, 𝑖1, 𝑖2},
{𝑖1, 𝑖2, 𝑖3}}.

3.2 Problem Statement
Given a 𝐾single-bounded subject graph and the LUT architecture
shown in Figure 2, this work aims to select a subset of single nodes
and node pairs from the graph. These nodes are used in technology
mapping. Each single node 𝑛 has a representative single-output
cut 𝑐𝑢𝑡 (𝑛), while each node pair (𝑛1, 𝑛2) has a representative dual-
output cut 𝑐𝑢𝑡 (𝑛1, 𝑛2). These cuts can cover all non-PI nodes.

This work targets delay and area minimization. The delay of the
mapped netlist is simplymodeled as the greatest depth of all selected
nodes in this work, which can be extended to model accurate delay
using weighted depth. The depth of a node is computed as:
• For a PI node 𝑛, 𝑑𝑒𝑝𝑡ℎ(𝑛) = 0.

• For a single node 𝑛, assuming that 𝑐𝑢𝑡 (𝑛) = {𝑛1, 𝑛2, ...},
𝑑𝑒𝑝𝑡ℎ(𝑛) = max{𝑑𝑒𝑝𝑡ℎ(𝑛1), 𝑑𝑒𝑝𝑡ℎ(𝑛2), ...}+1. We also de-
fine the cut depth as the node depth𝑑𝑒𝑝𝑡ℎ(𝑐𝑢𝑡 (𝑛)) = 𝑑𝑒𝑝𝑡ℎ(𝑛).
• For a node pair (𝑛1, 𝑛2), they have to be computed at the same
time and thus have the same depth.𝑑𝑒𝑝𝑡ℎ(𝑛1) = 𝑑𝑒𝑝𝑡ℎ(𝑛2) =
max{𝑑𝑒𝑝𝑡ℎ(𝑐𝑢𝑡 (𝑛1)), 𝑑𝑒𝑝𝑡ℎ(𝑐𝑢𝑡 (𝑛2))}.

The area of the mapped netlist is the number of used LUTs, each of
which has either one output or dual outputs.

4 DUAL-OUTPUT LUT MAPPING FLOW
This section proposes our cut-based dual-output LUT mapping flow
and focuses on three steps in one mapping pass.

4.1 Mapping Flow Overview
Figure 3a depicts our dual-output LUT mapping flow. For any given
combinational circuit, we convert it into a 2-bounded subject graph
by performing ABC single-output LUT-2 mapping. The following
LUT generation and merging are based on this subject graph. Since
a 𝐾-input LUT can implement any logic function with no more
than 𝐾 inputs, we do not restrict the logic operation type in our
2-bounded subject graph. The following steps select nodes and cuts
from the graph without changing the graph structure.

We perform several mapping passes on the subject graph to
minimize the delay and area of the mapped netlist. The first two
depth passes optimize the depth of all nodes with different heuristic
metrics. The following exact and flow passes iteratively optimize
the local area and the global area without worsening the depth until
convergence or reaching the maximum number of iterations.

Figure 3b illustrates the details of a mapping pass. A mapping
pass takes the original 2-bounded subject graph and the mapped
netlist with dual-output LUTs (except the first pass) from the pre-
vious pass as the input. In each pass, we first compute priority
single-output cuts for all nodes in the subject graph. Then, we se-
lect representative single-output cuts and dual-output cut pairs by
global cut merging. Heuristic metric computation for cut selection
depends on the previous mapped LUT netlist and varies in different
passes. Finally, we refine the mapped netlist in every few layers to
further improve the cut merging rate.

4.2 Priority Cut Computation
Similar to [22], we avoid the hurdle of enumerating all cuts by
computing limited priority cuts. At each node, we store up to 2𝑃
priority cuts, including 𝑃 𝐾single-feasible cuts and 𝑃 𝐾dual-feasible
cuts. The former ones are prepared for single-output cut generation
while the latter ones are prepared for dual-output cut merging. Two
types of cuts are selected individually using the same heuristic
metrics. The best 𝐾single-feasible cut is the representative single-
output cut of the node. Typically, 𝑃 ≤ 30 in our mapping flow.

The priority cut computation starts from PIs and is performed on
the subject graph in the topological order. A node is computed after
its two fanins are computed. For a non-PI node, we can generate
at most (2𝑃 + 1)2 candidate cuts. The best two cuts, i.e., a 𝐾single-
feasible one and a 𝐾dual-feasible one, from the previous mapping
pass are also added to the candidates. After filtering the dominated
cuts and the cuts that do not satisfy the delay constraint, we sort
the rest cuts to find no more than 2𝑃 priority cuts.
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A combinational circuit

Dual-output LUT mapping

Single-output LUT-2 mapping

Converge or
𝐼𝑡𝑒𝑟 > 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 ?

Y

N

Exact (area/edge) pass(area/edge) Flow pass

Depth 2 passDepth 1 pass

(a) Mapping flow overview.

Priority cut computation Global dual-output cut merging Local refinement2-bounded subject graph Dual-output LUT mapping

(b) A (depth/exact/flow) mapping pass. All of the mapping passes in the flow consist of three steps in common.

Figure 3: Our dual-output LUT mapping flow.

Algorithm 1 Global dual-output cut merging algorithm
Input: A 2-bounded subject graph
Output: The cut set 𝐶𝑈𝑇 used in the mapped netlist
1: 𝐶𝑈𝑇 ← ∅
2: 𝑀𝑃 ← 𝑃𝑂𝑠 // the mapping frontier
3: while𝑀𝑃 ≠ ∅ do
4: 𝑛deep ← argmax𝑛∈𝑀𝑃 {𝑑𝑒𝑝𝑡ℎ(𝑛)}
5: 𝑐𝑢𝑡better ← 𝑐𝑢𝑡 (𝑛deep)
6: 𝑐𝑢𝑡merge ← the best 𝐾dual-feasible cut rooted at 𝑛deep
7: for 𝑛 ∈ 𝑀𝑃 − 𝑛deep do // find the best dual-output cut
8: for 𝑐𝑢𝑡merge ∪ 𝑐𝑢𝑡other ∈ Φ(𝑛deep, 𝑛) do
9: if 𝑐𝑢𝑡merge ∪ 𝑐𝑢𝑡other is better than 𝑐𝑢𝑡better then
10: 𝑐𝑢𝑡better ← 𝑐𝑢𝑡merge ∪ 𝑐𝑢𝑡other
11: end if
12: end for
13: end for
14: 𝐶𝑈𝑇 ← 𝐶𝑈𝑇 ∪ 𝑐𝑢𝑡better
15: 𝑀𝑃 ← 𝑀𝑃 − 𝑟𝑜𝑜𝑡 (𝑐𝑢𝑡better )
16: 𝑀𝑃 ← 𝑀𝑃 ∪ 𝑐𝑢𝑡better − 𝑃𝐼𝑠
17: end while

We do not compute dual-output cuts in this step for two reasons.
On the one hand, if we enumerate dual-output cuts for all node
pairs, the time complexity becomes 𝑂 (𝑃2𝑁 2) and is unacceptable
for large graphs. 𝑁 is the number of nodes. On the other hand, if
we only compute limited dual-output cuts for a node, it is hard to
guarantee that both cut roots are used simultaneously.

4.3 Global Dual-Output Cut Merging
Algorithm 1 shows the global dual-output cut merging algorithm.
We traverse the subject graph in a reverse topological order to derive
a mapped netlist. During the traversal, we maintain a mapping
frontier list𝑀𝑃 to store the nodes that have to be mapped next. At
the beginning,𝑀𝑃 consists of all POs (Line 2). After a cut 𝑐𝑢𝑡better
is added to the mapping result, we move the cut root(s) out of𝑀𝑃
and add the non-PI cut leaves into𝑀𝑃 (Line 15-16).

Each iteration from Line 4 to Line 13 selects a new cut and adds
it into 𝐶𝑈𝑇 . First, we specify the deepest node 𝑛deep in 𝑀𝑃 as a
cut root (Line 4). Its representative single-output cut 𝑐𝑢𝑡 (𝑛deep)
is a candidate (Line 5) while its best 𝐾dual-feasible cut 𝑐𝑢𝑡merge is
one single-output cut in the dual-output cut (Line 6). Then, we

𝑖! 𝑖" 𝑖#

𝑜! 𝑜" 𝑜# 𝑜$

𝑖$ 𝑖% 𝑖& 𝑖'

𝑐! 𝑐"

𝑐# 𝑐$

merging graphtwo-layer netlist

𝐼()*+ = 𝐼,-*./01
= 𝐾()*+ = 4

Figure 4: An example of the merging graph construction.
The root of 𝑐𝑖 is 𝑜𝑖 . The best mapping merges two dual-
output cuts, 𝑐1 ∪ 𝑐2 and 𝑐3 ∪ 𝑐4, from four single-output cuts.
The merging rate is 4−2

4 × 100% = 50%.

enumerate the 𝐾dual-feasible cuts of the other nodes in𝑀𝑃 to find
the best dual-output cut (Line 7-13). Both roots stay in𝑀𝑃 , which
guarantees that they appear in the mapped netlist simultaneously.
Finally, we add the best cut 𝑐𝑢𝑡better into 𝐶𝑈𝑇 (Line 14).

Since 𝑛deep is the deepest node, its priority cut is deeper than
the rest cuts. Merging it with the other node will not worsen its
depth. Furthermore, 𝑛deep is on the critical path of the graph, so
the cut merging operation will not worsen the total delay of the
mapped netlist. We derive that, if the subject graph structure is
not changed, our merging algorithm can achieve the best delay of
the conventional cut-based mapping approach without considering
dual-output cuts.

4.4 Local Refinement
The global cut merging step greedily selects the representative cuts
and may not get the optimal area. As a result, we do some local
refinement to further reduce the area by improving the cut merging
rate. In this work, we define merging rate as single area − dual area

single area ×
100%. A higher merging rate means smaller area for a given single-
output cut set. This step does not change the used nodes but only
merge more cuts.

To ensure the optimal delay during refinement, we compute
the required depths, i.e., the depth upper bounds that can remain
the current delay, of used nodes [5]. For two single-output cuts, if
the current depths of both cuts do not exceed the required depths
of the other cuts, merging two cuts will not worsen the delay of
the mapped netlist. The required depths of POs are equal to their
current depths. For the other nodes, we can compute their required
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Table 2: Heuristic metrics for cut selection. The cut with a smaller heuristic metric is better. In this table, 𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑥) means the
fanout set of 𝑥 or 𝑟𝑜𝑜𝑡 (𝑥) in the previous mapped netlist except for the first mapping pass. It can fluctuate among different
mapping passes. If a node 𝑥 is unused, 𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑥) is an empty set. 𝑎𝑟𝑒𝑎(𝑥) represents the number of cuts that can cover all of
the nodes in 𝑥 . 𝑒𝑑𝑔𝑒 (𝑥) represents the total fanin edge number of nodes in 𝑥 .

Metric Single-output cut 𝑐 Dual-output cut 𝑐 = 𝑐1 ∪ 𝑐2
Depth 𝑑𝑒𝑝𝑡ℎ (𝑐) max{𝑑𝑒𝑝𝑡ℎ (𝑐1), 𝑑𝑒𝑝𝑡ℎ (𝑐2) }

Exact area 𝑎𝑟𝑒𝑎 (𝑀𝐹𝐹𝐶 (𝑟𝑜𝑜𝑡 (𝑐))) 2
5 · 𝑎𝑟𝑒𝑎 (𝑀𝐹𝐹𝐶 (𝑟𝑜𝑜𝑡 (𝑐1), 𝑟𝑜𝑜𝑡 (𝑐2)))

Area flow 1
|𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑐 ) | ·

[
𝑎𝑟𝑒𝑎 (𝑐) +∑𝑛∈𝑐 𝑎𝑟𝑒𝑎𝑓 𝑙𝑜𝑤 (𝑐𝑢𝑡 (𝑛))

] 2
|𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑐1 )+𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑐2 ) | ·

[
𝑎𝑟𝑒𝑎 (𝑐) +∑𝑛∈𝑐 𝑎𝑟𝑒𝑎𝑓 𝑙𝑜𝑤 (𝑐𝑢𝑡 (𝑛))

]
Cut size |𝑐 | |𝑐1 − 𝑐2 | + |𝑐2 − 𝑐1 |
Fanin refs

∑
𝑛∈𝑐 |𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑛) |

∑
𝑛∈𝑐1−𝑐2 |𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑛) | +

∑
𝑛∈𝑐2−𝑐1 |𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑛) |

Exact edge 𝑒𝑑𝑔𝑒 (𝑀𝐹𝐹𝐶 (𝑟𝑜𝑜𝑡 (𝑐))) 2
5 · 𝑒𝑑𝑔𝑒 (𝑀𝐹𝐹𝐶 (𝑟𝑜𝑜𝑡 (𝑐1), 𝑟𝑜𝑜𝑡 (𝑐2)))

Edge flow 1
|𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑐 ) | ·

[
𝑒𝑑𝑔𝑒 (𝑐) +∑𝑛∈𝑐 𝑒𝑑𝑔𝑒𝑓 𝑙𝑜𝑤 (𝑐𝑢𝑡 (𝑛))

] 2
|𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑐1 )+𝑓 𝑎𝑛𝑜𝑢𝑡 (𝑐2 ) | ·

[
𝑒𝑑𝑔𝑒 (𝑐) +∑𝑛∈𝑐 𝑒𝑑𝑔𝑒𝑓 𝑙𝑜𝑤 (𝑐𝑢𝑡 (𝑛))

]
depths in a reverse topological order:

𝑟𝑒𝑞(𝑛) = min{𝑟𝑒𝑞(𝑛1), 𝑟𝑒𝑞(𝑛2), ...} − 1 fanout (𝑛) = {𝑛1, 𝑛2, ...}.

We refine the mapped netlist in every few layers that contain
the nodes with the same depth to reduce the time complexity. The
layer number depends on the circuit size. The dual-output cuts in
these layers are first decomposed to single-output cuts. Then, we
construct a merging graph with each node representing a single-
output cut. If merging two cuts do not worsen the total delay, we
add an edge between them. Finally, we compute the maximum
cardinality matching using the𝑂 (𝑁 3) blossom algorithm [10]. The
matched nodes in the merging graph corresponds to the cut pairs
in the mapped netlist.

Figure 4 gives an example of two layers and four cuts. Cut pairs
that meet the constraints in Section 2.3 are connected. Since these
cuts have the same depth, connecting them will not worsen the
delay. We find two dual-output cuts from the merging graph, which
is the best mapping in this small netlist.

5 CUT SELECTION HEURISTIC
This section reviews some existing heuristic metrics for single-
output cuts and then extends them to support dual-output cuts.

5.1 Single-output Cut Selection
We list some commonly used heuristic metrics [13, 21] for single-
output cut selection in the second column of Table 2. They are:

• depth. Minimizing the depth of all cuts can minimize the
total delay.
• exact area. This is a local area estimation. The MFFC of a
node can only be covered by the cut rooted at the node or
its precursor.
• area flow. This is a global area estimation, which equals to
the least number of cuts needed to map the current cut and
all of its precursors.
• cut size. Without affecting the delay and area of the mapped
netlist, a smaller cut is more likely to be merged in a later
packing phase.
• fanin refs. A smaller fanin reference counter means a smaller
overlap between cuts. Thus, these cuts can cover more nodes.

Table 3: Heuristic metric combination in different passes.

Mapping pass Depth 1 Depth 2 Exact Flow
Primary metric depth depth exact area area flow
Tie-breaker 1 cut size area flow fanin refs fanin refs
Tie-breaker 2 fanin refs cut size depth depth
Tie-breaker 3 – – exact edge edge flow

• exact edge. This is a local edge estimation. Minimizing edges
can reduce the wire length in the physical implementation
and the average cut size.
• edge flow. This is a global edge estimation.

Among them, we can get cut size and fanin refs directly. Depth, area
flow and edge flow can be computed in a topological order during
priority cut computation. The MFFC set is typically small, so we
can compute exact area and exact edge with a fast local depth-first
traversal. We still use these heuristic metrics in the priority cut
computation step of our mapping pass.

5.2 Dual-output Cut Selection
In Algorithm 1, Line 9 compares a single-output cut with a dual-
output cut or compares two dual-output cuts. We extend the heuris-
tic metrics to support dual-output cut selection. Our extension
follows two cut selection principles for a given cut root:
• We prefer dual-output cuts with more sharing inputs rather
than its representative single-output cut.
• We prefer its representative single-output cut rather than
dual-output cuts with less or no sharing inputs.

We can interpret these two principles from the perspective of the
covered node number. The number of non-PI nodes in the subject
graph is fixed. Without considering the overlap between cuts, in
order to cover the non-PI nodes with fewer cuts, we have to increase
the number of nodes that each cut can cover.

For a single-output cut, the number of covered nodes is usually
proportional to the input number. In particular, a single-output 𝐾-
input cut in a 2-bounded subject graph, e.g., {𝑛1, 𝑛2} and {𝑛1, 𝑖2, 𝑖3}
in Figure 1, can cover at least (𝐾 − 1) nodes. For a dual-output
cut, with the increase of the sharing input number, the total input
number and the average covered node number also increases. A
dual-output cut with enough sharing inputs can cover more nodes
than the representative single-output cut.
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The extension is listed in the third column of Table 2. The ex-
tended metrics are:
• depth. The depth of a dual-output cut is defined in Section 3.2.
• exact area. The MFFC of two roots is defined as a subset of
their fanin cones, such that every path from a node in the
subset to the POs passes through one of the roots. It contains
a little more nodes whose fanin reference counters equal to
2 than two independent MFFCs. It is still typically small. For
fair comparison with single-output cuts, we add a coefficient
2
5 , which is slightly smaller than 1

2 .
• area flow. The coefficient 2 is for fair comparison. Both exact
area and area flow represent the number of cuts that can
cover some given nodes, so they follow two cut selection
principles.
• cut size. We only consider the inputs that are not shared.
When compared to a single-output cut, the dual-output cuts
with more sharing inputs will have advantages.
• fanin refs. Similar to cut size, it encourages more sharing
inputs.
• exact edge. Its extended formula is similar to that of exact
area.
• edge flow. Its extended formula is similar to that of area flow.

These extended metrics can be computed in a similar way to the
original ones. We can also get them in a reasonably short time.

5.3 Heuristic Metric Combination
Table 3 lists different heuristic metrics used in each mapping pass.
We use the same combination as that in the single-output map-
ping [22]. For example, in the “Depth 1” pass, we prefer cuts with
smaller depths. If there is a tie, we prefer cuts of smaller size; If
there still is a tie, we prefer cuts with smaller area flow. Comparison
of dual-output cuts (Line 9 in Algorithm 1) has a slight difference.
We do not need to compare their depths because all dual-output
cuts are as deep as the single-output cut 𝑐𝑢𝑡merge .

6 EXPERIMENTAL EVALUATION
We implement our technology mapping algorithm in C++ and run
it on an Intel Xeon 2-CPU 10-core computer with 60GB RAM. We
select 13 large circuits from the EPFL benchmark suite [2] to eval-
uate its performance. These circuits are synthesized with ABC
commands “resyn; resyn2;” before technology mapping. All mapped
networks have been verified using ABC command “cec”, a combi-
national equivalence checker.

6.1 Delay and Area Evaluation
We compare our mapping flow with ABC using FPGA parameters
in Table 1. The results are listed in Table 4. For ABC, we get its
“single area” with the command “if -C 8” that stores at most 8 cuts
at a node. Then, we construct the global merging graph similar
to that in the local refinement step of our flow. We only connect
LUTs satisfying the delay constraint such that the total delay also
remains unchanged. We merge dual-output LUTs using this graph
to get the best “dual area” of ABC. For our flow, we get “single area”
by directly using the representative single-output cuts in the global
cut merging step without the local refinement step. We also set
𝑃 = 8 for a fair comparison.

We can see that our mapping flow achieves the same delay after
merging dual-output cuts. These delay results verify the effective-
ness of our algorithm that maps the deepest node first (Line 4 in
Algorithm 1). Our flow also achieves the same delay as ABC. ABC
can generate delay-optimal mapped netlists with single-output
LUTs, so we infer that our flow can achieve the optimal delay as
the conventional single-output mapping flow.

Despite of the disadvantage on single area, our mapping flow
saves 9.14%, 13.98% and 5.68% dual area on average on the three
FPGA series, respectively. This is mainly due to our higher merging
rate. Since our flow merges dual-output cuts during cut generation,
we can discover more possibilities for cut merging. Compared to
ABC, our flow achieves a 12.16%, a 14.89% and a 10.45% higher
merging rate on average on the three FPGA series, respectively.

Our mapping flow needs more area without considering dual
outputs, mainly because we do not reconstruct LUT networks after
the cut-based mapping. Previous reconstruction algorithms [20]
are designed for single-output cut structures and cannot be applied
to dual-output ones directly. We will develop new reconstruction
algorithms for dual-output cut structures in our future work.

Our flow performs better on UltraScale+ and Versal series than
Intel ALM series, because of their smaller LUT sizes. There are
𝑂 (𝑁𝐾 ) [7] 𝐾-feasible cuts in a graph with 𝑁 nodes. The number
of priority cuts for node pairs is even greater. For a given priority
cut number 𝑃 , our flow is more likely to store the best 𝐾𝑠𝑖𝑛𝑔𝑙𝑒 -
feasible and 𝐾𝑑𝑢𝑎𝑙 -feasible cut with a smaller LUT size. Our flow
has a higher merging rate on Versal series due to its more flexible
architecture. Its dual-output LUT can implement more complex
logic.

6.2 Detailed Analysis
6.2.1 Effect of local refinement. Table 5 lists the data without local
refinement. In general, local refinement can additionally improve
1.81% merging rate and save 2.10% area. Local refinement works on
more than half of the cases, especially the ones that have relatively
low merging rate after global cut merging. It additionally improves
2.94% merging rate and saves 3.41% area on these cases.

6.2.2 Effect of 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 . Figure 5 shows the effect of different
𝑚𝑎𝑥𝐼𝑡𝑒𝑟s. The dual area of our flow converges after 3 iterations for
most of the cases. But for some special cases, e.g., sin and square,
the dual area continues to change until 5 iterations. This may be
due to their special subject graph structures. The iterative area
optimization using both area flow and exact area heuristic met-
rics brings in about 16% additional dual area improvement. 14%
improvement comes from the first iteration, and the rest 2% comes
from the following iterations.

6.2.3 Effect of 𝑃 . Figure 6 shows the effect of different 𝑃s. The
area does not change much (<3%) when 𝑃 ≥ 5 for most of the
cases. It means that the priority cut set already contains the best
representative cuts and cut pairs. Continuing to increase 𝑃 will
only lead to useless cut enumeration. But for some special cases,
e.g., cavlc, sin and int2float, our dual area gradually decreases with
the increase of 𝑃 . Setting 𝑃 = 30 helps save 3% area on these three
cases compared to 𝑃 = 5.
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Table 4: Comparison of ABC and our LUT mapping flow. Delay remains unchanged after considering dual-outputs in both
ABC and our flow, so each flow only contains one delay column. We set𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 5 and 𝑃 = 8 in our mapping flow.

FPGA Case PI PO Size ABC Ours Area saving
single
area

dual
area

merging
rate delay single

area
dual
area

merging
rate delay single dual

UltraScale+

voter 1001 1 8869 1736 1621 6.62% 13 1807 1520 15.88% 13 -4.09% 6.23%
cavlc 10 11 705 118 115 2.54% 4 119 108 9.24% 4 -0.85% 6.09%
dec 8 256 321 287 157 45.30% 2 273 140 48.72% 2 4.88% 10.83%

priority 128 8 803 179 175 2.23% 26 219 160 26.94% 26 -22.35% 8.57%
adder 256 129 1020 257 236 8.17% 51 254 189 25.59% 51 1.17% 19.92%
arbiter 256 129 12351 2722 2700 0.81% 18 2725 2469 9.39% 18 -0.11% 8.56%
sin 24 25 4398 1473 1389 5.70% 36 1680 1426 15.12% 36 -14.05% -2.66%
bar 135 128 3323 512 501 2.15% 4 512 448 12.50% 4 0.00% 10.58%
max 512 130 3669 793 775 2.27% 39 837 822 1.79% 39 -5.55% -6.06%
i2c 147 142 1414 315 288 8.57% 4 382 300 21.47% 4 -21.27% -4.17%

square 64 128 13388 3948 3725 5.65% 50 3902 3241 16.94% 50 1.17% 12.99%
ctrl 7 26 129 28 27 3.57% 2 28 17 39.29% 2 0.00% 37.04%

int2float 11 7 243 47 46 2.13% 3 46 41 10.87% 3 2.13% 10.87%
average 7.36% 19.52% -4.53% 9.14%

Versal

voter 1001 1 8869 1736 1558 10.25% 13 1807 1264 30.05% 13 -4.09% 18.87%
cavlc 10 11 705 118 109 7.63% 4 119 80 32.77% 4 -0.85% 26.61%
dec 8 256 321 287 157 45.30% 2 273 137 49.82% 2 4.88% 12.74%

priority 128 8 803 179 164 8.38% 26 219 150 31.51% 26 -22.35% 8.54%
adder 256 129 1020 257 223 13.23% 51 254 140 44.88% 51 1.17% 37.22%
arbiter 256 129 12351 2722 2615 3.93% 18 2725 2457 9.83% 18 -0.11% 6.04%
sin 24 25 4398 1473 1210 17.85% 36 1680 1109 33.99% 36 -14.05% 8.35%
bar 135 128 3323 512 448 12.50% 4 512 448 12.50% 4 0.00% 0.00%
max 512 130 3669 793 650 18.03% 39 837 690 17.56% 39 -5.55% -6.15%
i2c 147 142 1414 315 266 15.56% 4 382 268 29.84% 4 -21.27% -0.75%

square 64 128 13388 3948 2642 33.08% 50 3902 2127 45.49% 50 1.17% 19.49%
ctrl 7 26 129 28 21 25.00% 2 28 15 46.43% 2 0.00% 28.57%

int2float 11 7 243 47 45 4.26% 3 46 35 23.91% 3 2.13% 22.22%
average 16.54% 31.43% -4.53% 13.98%

Intel ALM

voter 1001 1 8869 1405 1357 3.42% 10 1606 1221 23.97% 10 -14.31% 10.02%
cavlc 10 11 705 42 41 2.38% 2 42 38 9.52% 2 0.00% 7.32%
dec 8 256 321 256 256 0.00% 1 256 256 0.00% 1 0.00% 0.00%

priority 128 8 803 139 135 2.88% 18 185 134 27.57% 18 -33.09% 0.74%
adder 256 129 1020 221 191 13.57% 37 218 155 28.90% 37 1.36% 18.85%
arbiter 256 129 12351 2069 2003 3.19% 13 2067 1876 9.24% 13 0.10% 6.34%
sin 24 25 4398 1275 1187 6.90% 26 1359 1126 17.14% 26 -6.59% 5.14%
bar 135 128 3323 512 449 12.30% 4 512 439 14.26% 4 0.00% 2.23%
max 512 130 3669 643 504 21.62% 28 668 498 25.45% 28 -3.89% 1.19%
i2c 147 142 1414 259 226 12.74% 3 304 235 22.70% 3 -17.37% -3.98%

square 64 128 13388 3441 3202 6.95% 36 3640 2583 29.04% 36 -5.78% 19.33%
ctrl 7 26 129 25 15 40.00% 1 25 14 44.00% 1 0.00% 6.67%

int2float 11 7 243 26 25 3.85% 3 29 25 13.79% 3 -11.54% 0.00%
average 9.98% 20.43% -7.01% 5.68%

6.2.4 LUT Distribution. Figure 7 lists the ratio of LUTs with dif-
ferent inputs. We first focus on the dual-output LUTs in our flow.
LUT-5 and LUT-4 occupy 64.08% and 23.54% of decomposed dual-
output LUTs. On average, a dual-output LUT is composed of two
single-output LUT-4.51 and has 4.02 sharing inputs. The LUT dis-
tribution is consistent with our dual-output cut selection principles
in Section 5.2, which verifies the effectiveness of our extension.

Our flow also has advantages when compared to ABC. The dual-
output LUTs generated by our flow have advantages not only in
quantity, i.e., merging rate, but also in quality. In ABC, LUT-5 and
LUT-4 only occupy 61.44% (2.64% less) and 15.59% (7.95% less) of
decomposed dual-output LUTs. On average, a dual-output LUT is

composed of two single-output LUT-4.30 (0.21 less) and has 3.60
(0.42 less) sharing inputs.

6.2.5 Runtime. As shown in Figure 8, our mapping flow consumes
3.50×, 3.54× and 2.90× runtime on average on the three series, re-
spectively. Despite this, our flow successfully filters out most of the
node pairs from𝑂 (𝑁 2) pairs in total and saves a lot of computation.
The runtime of our flow is still linear in subject graph size and is af-
fordable for large industrial circuits. Our flow additionally traverses
the subject graph in global cut merging and local refinement step to
merge cuts, which leads to a larger coefficient in time complexity.
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Table 5: Merging rate and area saving of our mapping flow
without local refinement using UltraScale+ parameters.

FPGA Case Dual area Merging rate Area saving

UltraScale+

voter 1597 11.62% 1.48%
cavlc 110 7.56% 4.35%
dec 140 48.72% 10.83%

priority 171 21.92% 2.29%
adder 189 25.59% 19.92%
arbiter 2502 8.18% 7.33%
sin 1519 9.58% -9.36%
bar 448 12.50% 10.58%
max 826 1.31% -6.58%
i2c 307 19.63% -6.60%

square 3376 13.48% 9.37%
ctrl 17 39.29% 37.04%

int2float 41 10.87% 10.87%
average 17.71% 7.04%

7 RELATEDWORK
There are mature technology mapping flows for single-output LUTs.
ABC integrates some mapping commands. For example, “fpga” [21]
and “if ” [22] implement cut-based mapping approaches. Based on
the results of these two commands, “mfs” [4] further optimizes don’t
cares by a SAT solver while “lutpack” [20] decomposes and rewrites
LUT networks. Besides ABC, DAOmap [5] closely monitors various
node duplication scenarios and designs novel heuristic metrics.
PIMap [17] couples logic transformations and technology mapping
using a parallelized iterative improvement approach.

Some works are aware of the dual-output LUTs and attempt
to consider LUT merging during technology mapping. Murgal et
al. [23] first transform the LUT merging problem to the maximum
cardinality matching problem. Huang et al. [12, 16] exploit the
feature of the two-output LUT architecture with Roth-Karp decom-
position. WireMap [13] uses an edge flow heuristic to reduce the
average LUT size such that the VTR packing phase [24] can merge
more LUTs. Dickin et al. [9] improve WireMap by considering LUT
balancing. However, these works still separate single-output LUT
generation and dual-output LUT merging into two design phases,
which leads to a low LUT merging rate. Besides, Jr et al. [18, 19]
confirm the potential of using KL-cuts on multi-output technology
mapping, but they do not achieve the state-of-the-art result on
mapping.

8 CONCLUSION
In this work, we propose a novel cut-based mapping flow that
can merge dual-output LUTs during technology mapping. In each
mapping pass, we perform global dual-output cut merging and local
refinement. We also extend conventional heuristic metrics to make
it applicable to dual-output cut selection. Experimental evaluation
shows that our mapping flow achieves a higher LUT merging rate
and smaller area without worsening the delay.
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